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Classification

 Qualitative variables take values in an unordered set 𝐶, such as:

 Eye color ∈ {brown, blue, green}

 Email ∈ {spam, ham}

 Given a feature vector 𝑋 and a qualitative response 𝑌 taking values in the set 𝐶 , 

the classification task is to build a function 𝐶(𝑋) that takes as input the feature 

vector 𝑋 and predicts its value for 𝑌; i.e. 𝐶(𝑋) ∈ 𝐶

 Often we are more interested in estimating the probabilities that 𝑋 belongs to 

each category in 𝐶
 For example, it is more valuable to have an estimate of the probability that an insurance 

claim is fraudulent, than a classification fraudulent or not
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Example Dataset: Credit Card Default
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Can we use Linear Regression?

 Suppose we have a response variable with three possible values. We must 

classify patients according to their symptoms. We can have the code

𝑌 = ቐ
1 if stroke;
2 if drug overdose;
3 if epileptic seizure.

 This coding suggests an ordering, and in fact implies that the difference

between stroke and drug overdose is the same as between drug overdose and 

epileptic seizure
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Can we use Linear Regression?

 For the binary response in the Default classification task that we code

𝑌 = ቊ
1 if Yes
0 if No

 Can we simply perform a linear regression of 𝑌 on 𝑋 and classify as Yes if 𝑌 >
0.5?

 In the binary case it is not hard to show that even if we flip the above coding, linear 

regression will produce the same final predictions

 In this case of a binary outcome, linear regression does a good job as a classifier, and is 

related to linear discriminant analysis which we discuss later

 However, linear regression might produce probabilities less than zero or bigger than one. 

Logistic regression is more appropriate
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https://stats.stackexchange.com/questions/31459/what-is-the-relationship-between-regression-and-linear-discriminant-analysis-ld


Can we use Linear Regression?

 The orange marks indicate the response 𝑌, either 0 or 1. Linear regression does 

not estimate Pr(𝑌 = 1|𝑋) well. Logistic regression seems well suited to the 

task
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Logistic Regression

 Let’s write 𝑝(𝑋) = 𝑃𝑟(𝑌 = 1|𝑋) for short and consider using balance to 

predict default. Logistic regression uses the form

𝑌|𝑋= Bernoulli(𝑝(𝑋))

𝐸(𝑌|𝑋) = 𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑋

1 + 𝑒𝛽0+𝛽1𝑋

(e ≈ 2.71828 is a mathematical constant [Euler’s number])

 No matter what values 𝛽0, 𝛽1 or 𝑋 take, 𝑝(𝑋) will have values between 0 and 1

 A bit of rearrangement gives

log(
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝛽0 + 𝛽1𝑋

 This monotone transformation is called the log odds or logit transformation of 𝑝(𝑋)

 Note that the decision boundary is still linear
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https://stats.stackexchange.com/questions/93569/why-is-logistic-regression-a-linear-classifier


Estimating the Regression Coefficients - Maximum Likelihood

 We use maximum likelihood to estimate the parameters

𝑙 𝛽0, 𝛽1 = ෑ

𝑖:𝑦𝑖=1

𝑝(𝑥𝑖) ෑ

𝑖:𝑦𝑖=0

1 − 𝑝(𝑥𝑖)

 This likelihood gives the probability of the observed zeros and ones in the data. 

We pick 𝛽0 and 𝛽1 to maximize the likelihood of the observed data

 Most statistical packages can fit linear logistic regression models by maximum 

likelihood (𝑧-statistics or 𝑡-statistics?)
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https://dafriedman97.github.io/mlbook/content/c3/s1/logistic_regression.html#parameter-estimation
https://stats.stackexchange.com/questions/60074/wald-test-for-logistic-regression


Making Predictions

 What is our estimated probability of default for someone with a balance of 

$1000?

𝑝 𝑋 =
𝑒𝛽0+𝛽1𝑋

1 + 𝑒𝛽0+𝛽1𝑋
=

𝑒−10.6513+0.0055×1000

1 + 𝑒−10.6513+0.0055×1000
= 0.006

 With a balance of $2000?

𝑝 𝑋 =
𝑒𝛽0+𝛽1𝑋

1 + 𝑒𝛽0+𝛽1𝑋
=

𝑒−10.6513+0.0055×2000

1 + 𝑒−10.6513+0.0055×2000
= 0.586
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Making Predictions

 Lets do it again, using student as the predictor.

𝑃𝑟 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑌𝑒𝑠 =
𝑒−3.5041+0.4049×1

1 + 𝑒−3.5041+0.4049×1
= 0.0431

𝑃𝑟 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑁𝑜 =
𝑒−3.5041+0.4049×0

1 + 𝑒−3.5041+0.4049×0
= 0.0292
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Logistic regression with several variables

𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝

log(
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝

Why is coefficient for student negative, while it was positive before?  
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Confounding

 Students tend to have higher balances than non-students, so their marginal 

default rate is higher than for non-students

 But if we have the information about balance and income then for each level of balance, 

students default less in multiple logistic regression

 Multiple logistic regression can tease this out
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Multinomial logistic regression - with more than two classes

 So far we have discussed logistic regression with two classes. It is easily 

generalized to more than two classes. One version has the symmetric form

𝑌|𝑋= Categorical (𝑝(𝑋))

𝑃𝑟(𝑌 = 𝑘|𝑋) =
𝑒𝛽𝑘0+𝛽𝑘1𝑋1+𝛽𝑘2𝑋2+⋯+𝛽𝑘𝑝𝑋𝑝

σ𝑙=1
𝐾 𝑒𝛽𝑙0+𝛽𝑙1𝑋1+𝛽𝑙2𝑋2+⋯+𝛽𝑙𝑝𝑋𝑝

log
Pr 𝑌 = 𝑘 𝑋 = 𝑥

Pr 𝑌 = 𝑘′ 𝑋 = 𝑥
= (𝛽𝑘0−𝛽𝑘′0) + (𝛽𝑘1−𝛽𝑘′1)𝑋1 +⋯+ (𝛽𝑘𝑝−𝛽𝑘′𝑝)𝑋𝑝

 Here, we actually estimate coefficients for all 𝐾 classes

 Multinomial logistic regression is also referred to as multiclass logistic regression 

 This is similar to the softmax activation function used in the neural network model
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https://dafriedman97.github.io/mlbook/content/c3/s1/logistic_regression.html#multiclass-logistic-regression


Why use the other approaches?

1. When the classes are well-separated, the parameter estimates for the logistic 

regression model are surprisingly unstable. Linear discriminant analysis does 

not suffer from this problem

2. If 𝑛 is small and the distribution of the predictors 𝑋 is approximately normal 

in each of the classes, the linear discriminant model is again more stable than 

the logistic regression model

3. Linear discriminant analysis is popular when we have more than two 

response classes and it also provides low-dimensional views of the data
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https://stats.stackexchange.com/questions/254124/why-does-logistic-regression-become-unstable-when-classes-are-well-separated


Generative Models for Classification

 Model the distribution of 𝑋 in each of the classes separately, and then use 

Bayes theorem to flip things around and obtain Pr(𝑌 |𝑋)
 When we use normal (Gaussian) distributions for each class, this leads to linear or 

quadratic discriminant analysis. However, this approach is quite general, and other 

distributions can be used as well
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https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-

machine-learning/

https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-machine-learning/


Bayes theorem for classification

 According to the Bayes’ theorem:

Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
Pr 𝑋 = 𝑥 𝑌 = 𝑘 × Pr(𝑌 = 𝑘)

Pr(𝑋 = 𝑥)

One writes this for discriminant analysis:

𝑝𝑘 𝑥 = Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
𝜋𝑘𝑓𝑘(𝑥)

σ𝑙=1
𝐾 𝜋𝑙𝑓𝑙(𝑥)

 𝑓𝑘(𝑥) = Pr 𝑋 = 𝑥 𝑌 = 𝑘 is the density for 𝑋 in class 𝑘. Here we will use normal densities 

for these, separately in each class

 𝜋𝑘 = Pr(Y = k) is the marginal or prior probability for class 𝑘

 We discuss three classifiers that use different estimates of 𝑓𝑘(𝑥) to approximate 

the Bayes classifier: linear discriminant analysis, quadratic discriminant 

analysis, and naive Bayes
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Classify to the highest density

 We classify a new point according to which density is highest

 When the priors are different, we take them into account as well, and compare 𝜋𝐾𝑓𝑘(𝑥). 
On the right, we favor the pink class — the decision boundary has shifted to the left

 Pr 𝑌 = 𝑘 𝑋 = 𝑥 is the posterior probability
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Linear Discriminant Analysis when 𝑝 = 1

 The Gaussian density has the form

𝑓𝑘 𝑥 =
1

2𝜋𝜎𝑘
𝑒
−1
2
(
𝑥−𝜇𝑘
𝜎𝑘

)2

 Here 𝜇𝑘 is the mean, and 𝜎𝑘
2 the variance (in class 𝑘). We will assume that all the 𝜎𝑘 = 𝜎

are the same

 Plugging this into Bayes’ formula, we get a rather complex expression for 𝑝𝑘(𝑥) = Pr(𝑌 =
𝑘|𝑋 = 𝑥):

𝑝𝑘(𝑥) =

𝜋𝑘
1

2𝜋𝜎
𝑒
−1
2 (

𝑥−𝜇𝑘
𝜎 )2

σ𝑙=1
𝐾 𝜋𝑙

1

2𝜋𝜎
𝑒
−1
2
(
𝑥−𝜇𝑙
𝜎

)2

 Happily, there are simplifications and cancellations
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Discriminant functions

 To classify at the value 𝑋 = 𝑥, we need to see which of the 𝑝𝑘(𝑥) is largest. 

Taking logs of 𝑝𝑘(𝑥), and discarding terms that do not depend on 𝑘, we see 

that this is equivalent to assigning 𝑥 to the class with the largest discriminant 

score:

𝛿𝑘 𝑥 = 𝑥 ∙
𝜇𝑘
𝜎2

−
𝜇𝑘
2

2𝜎2
+ log(𝜋𝑘)

 The above is called the discriminant function and note that 𝛿𝑘 𝑥 is a linear function of 𝑥
and 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑝𝑘 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝛿𝑘 𝑥

 If there are 𝐾 = 2 classes and 𝜋1 = 𝜋2 = 0.5, then one can see that the decision boundary 

is at

𝑥 =
𝜇1 + 𝜇2

2
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Discriminant functions

 Example with 𝜇1 = −1.25, 𝜇2 = 1.25, 𝜋1 = 𝜋2 = 0.5, and 𝜎2 = 1.

 Typically we don’t know these parameters; we just have the training data. In that case we 

simply estimate the parameters and plug them into the rule
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Estimating the parameters – Maximum likelihood

ො𝜋𝑘 =
𝑛𝑘
𝑛

ො𝜇𝑘 =
1

𝑛𝑘


𝑖:𝑦𝑖=𝑘

𝑥𝑖

ො𝜎2 =
1

𝑛 − 𝐾


𝑘=1

𝐾



𝑖:𝑦𝑖=𝑘

(𝑥𝑖−ො𝜇𝑘)
2 = 

𝑘=1

𝐾
𝑛𝑘 − 1

𝑛 − 𝐾
ො𝜎𝑘
2

መ𝛿𝑘 𝑥 = 𝑥 ∙
ො𝜇𝑘
ො𝜎2

−
ො𝜇𝑘
2

2 ො𝜎2
+ log( ො𝜋𝑘)

 Where ො𝜎𝑘
2 =

1

𝑛𝑘−1
σ𝑖:𝑦𝑖=𝑘

(𝑥𝑖−ො𝜇𝑘)
2 is the usual formula for the estimated variance in the 

𝑘th class and 𝑛𝑘 is the training sample in the 𝑘th class 

 We normalize by the scalar 𝑛 − 𝐾. When we fit a maximum likelihood estimator it should 

be divided by 𝑛, but if it is divided by 𝑛 − 𝐾, we get an unbiased estimator
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Linear Discriminant Analysis when 𝑝 > 1

 Density:𝑓𝑘 𝑥 =
1

(2𝜋)
𝑝
2|Σ|

1
2

𝑒
−1

2
(𝑥−𝜇𝑘)

𝑇Σ−1(𝑥−𝜇𝑘)

 Discriminant function: 𝛿𝑘 𝑥 = 𝑥𝑇Σ−1𝜇𝑘 −
1

2
𝜇𝑘
𝑇Σ−1𝜇𝑘 + log(𝜋𝑘)

=
−1

2
𝑥 − 𝜇𝑘

𝑇Σ−1 𝑥 − 𝜇𝑘 + log(𝜋𝑘) + 𝐶

 Despite its complicated form

𝛿𝑘 𝑥 = 𝑐𝑘0 + 𝑐𝑘1𝑥1 + 𝑐𝑘2𝑥2 +⋯+ 𝑐𝑘𝑝𝑥𝑝 is a linear function

The decision boundary 𝑥: 𝛿𝑘 𝑥 = 𝛿𝑙 𝑥 , 1 ≤ 𝑘, 𝑙 ≤ 𝐾 is also a linear function
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Assuming the same covariance matrix

Mahalanobis distance between 𝑥 and 𝜇𝑘

https://arxiv.org/pdf/1906.02590.pdf
https://stats.stackexchange.com/questions/140056/decomposition-of-inverse-covariance-matrix


From 𝛿𝑘(𝑥) to probabilities

 Once we have estimates መ𝛿𝑘(𝑥), we can turn these into estimates for class 

probabilities:

𝑃𝑟 𝑌 = 𝑘 𝑋 = 𝑥 =
𝑒
𝛿𝑘(𝑥)

σ𝑙=1
𝐾 𝑒𝛿𝑙(𝑥)

 So classifying to the largest መ𝛿𝑘(𝑥) amounts to classifying to the class for which

𝑃𝑟 𝑌 = 𝑘 𝑋 = 𝑥 is largest

 When 𝐾 = 2, we classify to class 2 if 𝑃𝑟 𝑌 = 𝑘 𝑋 = 𝑥 ≥ 0.5, else to class 1
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Illustration: 𝑝 = 2 and 𝐾 = 3 classes

 Here, 𝜋1 = 𝜋2 = 𝜋3 = 1/3

 The dashed lines are known as the Bayes decision boundaries. Were they 

known, they would yield the fewest misclassification errors, among all possible 

classifiers
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Alternative view of LDA (link with Fisher LDA)

 LDA can be used to perform supervised dimensionality reduction, by 

projecting the input data to a linear subspace consisting of the directions which 

maximize the separation between classes

 We can interpret LDA as assigning 𝑥 to the class whose mean is the closest in terms of 

Mahalanobis distance, while also accounting for the class prior probabilities

 Alternatively, LDA is equivalent to first sphering the data so that the covariance matrix is the 

identity, and then assigning 𝑥 to the closest mean in terms of Euclidean distance

 Note that the 𝐾 means 𝜇𝑘 are vectors in 𝑅𝑝, and they lie in an affine subspace 𝐻 of 

dimension at most 𝐾 − 1 (2 points lie on a line, 3 points lie on a plane, etc).

 Computing Euclidean distances in original 𝑝-dimensional space is equivalent to first projecting 

the 𝑥 into 𝐻, and computing the distances there

 In other words, if 𝑥 is closest to 𝜇𝑘 in the original space, it will also be the case in 𝐻. This shows 

that, implicit in the LDA classifier, there is a dimensionality reduction by linear projection onto a 

𝐾 − 1 dimensional space
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https://scikit-learn.org/stable/modules/lda_qda.html#lda-qda
https://arxiv.org/pdf/1906.02590.pdf


𝑊 = 

𝑘=1

𝐾



𝑖∈𝐶𝑘

(𝑥𝑖 − 𝜇𝑘)(𝑥𝑖 − 𝜇𝑘)
𝑇

𝐵 = 

𝑘=1

𝐾

𝑛𝑘 (𝜇𝑘 − 𝜇) (𝜇𝑘 − 𝜇)𝑇

 Fisher criteria is to maximize the 

generalized Rayleigh quotient

max
𝑎

𝑎𝑇𝐵𝑎

𝑎𝑇𝑊𝑎
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Within class covariance matrix

Between class covariance matrix

 This is a generalize eigenvalue problem and 𝑎1 is the eigenvector that correspond to 

the largest eigenvalue of 𝑊−1𝐵

 One can find the next direction 𝑎2 orthogonal to 𝑎1 such that 
𝑎2

𝑇𝐵𝑎2

𝑎2
𝑇𝑊𝑎2

is maximize and it correspond to the 

second largest eigenvalue

 𝑎𝑙 is known as discriminant coordinate, we can project the original data down to 𝐿 dimension

 Then we can classify the projected data using nearest to centroid rule 𝑎𝑟𝑔𝑚𝑖𝑛𝑗=1…𝑘
1

2
| 𝑥 − 𝜇𝑘|

2 − log 𝜋𝑘

 This is equivalent to ML solution with Gaussian model subject to rank 𝐿 (original LDA, ESL 4.8)

https://math.stackexchange.com/questions/1769712/how-to-maximize-generalized-rayleigh-ratio


Fisher’s Iris Data

 4 variables

 3 species

 50 samples/class

 Setosa

 Versicolor

 Virginica

 LDA classifies all but 3 

of the 150 training 

samples correctly
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https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html


Fisher’s Discriminant Plot

 When there are 𝐾 classes, linear discriminant analysis can be viewed exactly 

in a 𝐾 − 1 dimensional plot

 Why? Because it essentially classifies to the closest centroid, and they span a 

𝐾 − 1 dimensional plane

 Even when 𝐾 > 3, we can find the “best” 2-dimensional plane for visualizing the 

discriminant rule
28

only two orange and one green are misclassified



Back to the LDA on Credit Data

 (23 + 252)/10,000 errors — a 2.75% misclassification rate!

 Some caveats:

 This is training error, and we may be overfitting. Not a big concern here since 𝑛 = 10,000 and 

𝑝 = 2!

 If we classified to the prior — always to class No in this case — we would make 333/10000 

errors, or only 3.33%

 By the confusion matrix. Of the true No’s, we make 23/9667 = 0.2% errors; of the true Yes’s, 

we make 252/333 = 75.7% errors
29

Use balance and 

student variables 

to build LDA



Types of errors

 We produced previous table (confusion matrix) by classifying to class Yes if
𝑃𝑟(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝐵𝑎𝑙𝑎𝑛𝑐𝑒, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡) ≥ 0.5

 We can change the two error rates by changing the threshold from 0.5 to some other value 

in [0, 1]:
𝑃𝑟(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑌𝑒𝑠|𝐵𝑎𝑙𝑎𝑛𝑐𝑒, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 False positive rate: The fraction of negative examples that are classified as positive —

0.2% in previous example 

 False negative rate: The fraction of positive examples that are classified as negative —

75.7% in previous example
30

Threshold 0.2 

here



Varying the threshold

 In order to further reduce the false negative rate, we may want to reduce the 

threshold to 0.1 or less
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https://becominghuman.ai/whats-recall-and-precision-4a801b1ac0da

False positive rate =
𝐹𝑃

𝑇𝑁+𝐹𝑃

False negative rate =
𝐹𝑁

𝑇𝑃+𝐹𝑁
Negative Positive

Predict Negative TN (True Negative) FN (False Negative)

Predict Positive FP (False Positive) TP (True Positive)

Confusion matrix

https://becominghuman.ai/whats-recall-and-precision-4a801b1ac0da


ROC (Receiver Operating Characteristics) Curve

 The ROC plot displays both True and False positive rates simultaneously

 Sometimes we use the AUC or area under the curve to summarize the overall performance. 

Higher AUC is good

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(Precision)

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(Recall) = Sensitivity = True positive rate = Power 

 Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃

 False positive rate =
𝐹𝑃

𝑇𝑁+𝐹𝑃
= 1- Specificity (Type I error)

 False negative rate =
𝐹𝑁

𝑇𝑃+𝐹𝑁
= 1- Sensitivity (Type II error)

 Random classifier is the diagonal
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https://datascience.stackexchange.com/questions/31872/auc-roc-of-a-random-classifier/31877#31877


Other forms of Discriminant Analysis

Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
𝜋𝑘𝑓𝑘(𝑥)

σ𝑙=1
𝑘 𝜋𝑙𝑓𝑙(𝑥)

 When 𝑓𝑘(𝑥) are Gaussian densities, with the same covariance matrix Σ in each 

class, this leads to linear discriminant analysis

 By altering the forms for 𝑓𝑘(𝑥), we get different classifiers. With Gaussians but different Σ𝑘
in each class, we get quadratic discriminant analysis (QDA)

 It assumes that an observation from the 𝑘th class is of the form 𝑋~𝑁 𝜇𝑘 , Σ𝑘

 With 𝑓𝑘 𝑥 = ς𝑗=1
𝑝

𝑓𝑗𝑘(𝑥) (conditional independence model) in each class we get naive 

Bayes. If Gaussian is also impose this will mean the Σ𝑘 are diagonal

 Many other forms, by proposing specific density models for 𝑓𝑘 𝑥 , including nonparametric 

approaches
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Quadratic Discriminant Analysis

 The Bayes classifier assigns an observation 𝑋 = 𝑥 to which the following 

formula is largest

𝛿𝑘 𝑥 = −
1

2
𝑥𝑇Σ𝑘

−1𝑥 + 𝑥𝑇Σ𝑘
−1𝜇𝑘 −

1

2
𝜇𝑘
𝑇Σ−1𝜇𝑘 −

1

2
log Σ𝑘 + log(𝜋𝑘)

the quantity 𝑥 now appears as a quadratic function
34

The Bayes (purple dashed), LDA (black dotted), and QDA

(green solid) decision boundaries for a two-class problem

https://dafriedman97.github.io/mlbook/content/c4/concept.html#quadratic-discriminative-analysis-qda


 In general estimation of 𝑝-dimensional density 𝑓𝑘(𝑥) is challenging

 Assumes features are independent in each class
𝑓𝑘 𝑥 = 𝑓𝑘1 𝑥1 × 𝑓𝑘2 𝑥2 ×⋯× 𝑓𝑘𝑝(𝑥𝑝)

 It often leads to decent results, especially in settings where 𝑛 is not large enough relative to 

𝑝 for us to effectively estimate the joint distribution of the predictors within each class 

 If 𝑋𝑗 is quantitative, then we can assume that 𝑋𝑗|𝑌 = 𝑘~𝑁(𝜇𝑘𝑗 , 𝜎𝑘𝑗
2 ) which amounts to QDA with 

assumption that class-specific covariance matrix is diagonal. We can also replace 𝑓𝑘𝑗 𝑥𝑗 with 

non-parametric estimate with probability mass function (histogram)

 If 𝑋𝑗 is qualitative, then we can simply count the proportion of training observations for the 𝑗th

predictor corresponding to each class

 The posterior probability is:

Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
𝜋𝑘 × 𝑓𝑘1 𝑥1 × 𝑓𝑘2 𝑥2 ×⋯× 𝑓𝑘𝑝(𝑥𝑝)

σ𝑙=1
𝐾 𝜋𝑙 × 𝑓𝑙1 𝑥1 × 𝑓𝑙2 𝑥2 ×⋯× 𝑓𝑙𝑝(𝑥𝑝)
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Naive Bayes

 We now consider the naive Bayes classifier in 

a toy example with 𝑝 = 3 predictors and 𝐾 =
2 classes. The first two predictors are 

quantitative, and the third predictor is 

qualitative with three levels. Suppose further 

that ො𝜋1 = ො𝜋2 = 0.5
 New observation 𝑥∗ = (0.4,1.5,1)𝑇 ,

መ𝑓11 0.4 = 0.368, መ𝑓12 1.5 = 0.484, መ𝑓13 1 = 0.226,

መ𝑓21 0.4 = 0.030, መ𝑓22 1.5 = 0.130, መ𝑓23 1 = 0.616

 We have

Pr 𝑌 = 1 𝑋 = 𝑥∗ = 0.944
Pr 𝑌 = 2 𝑋 = 𝑥∗ = 0.056
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Naive Bayes

 Credit card data with threshold set to 0.5

 We have assumed that each quantitative predictor is drawn from a Gaussian distribution

 Does not outperform LDA since 𝑛 = 10,000 and 𝑝 = 2 in this case.
37
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An Analytical Comparison of different methods

 We would like to assign an observation that maximize the following formula

log
Pr 𝑌 = 𝑘 𝑋 = 𝑥
Pr 𝑌 = 𝐾 𝑋 = 𝑥

for   𝑘 = 1,… , 𝐾

 For LDA we have

log
Pr 𝑌 = 𝑘 𝑋 = 𝑥

Pr 𝑌 = 𝐾 𝑋 = 𝑥
= log(

𝜋𝑘
𝜋𝐾

) −
1

2
𝜇𝑘 + 𝜇𝐾

𝑇Σ−1 𝜇𝑘 − 𝜇𝐾 + 𝑥𝑇Σ−1 𝜇𝑘 − 𝜇𝐾

= 𝑎𝑘 + σ𝑗=1
𝑝

𝑏𝑘𝑗𝑥𝑗

 So LDA, like logistic regression, assumes that log odds of the posterior probabilities is linear in 𝑥

 For QDA we have

log
Pr 𝑌 = 𝑘 𝑋 = 𝑥

Pr 𝑌 = 𝐾 𝑋 = 𝑥
= 𝑎𝑘 +

𝑗=1

𝑝

𝑏𝑘𝑗𝑥𝑗 +

𝑗=1

𝑝


𝑙=1

𝑝

𝑐𝑘𝑗𝑙 𝑥𝑗𝑥𝑙

 QDA assumes that the log odds of the posterior probabilities is quadratic in 𝑥
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 For naïve Bayes

log
Pr 𝑌 = 𝑘 𝑋 = 𝑥

Pr 𝑌 = 𝐾 𝑋 = 𝑥
= log

𝜋𝑘
𝜋𝐾

+

𝑗=1

𝑝

log(
𝑓𝑘𝑗(𝑥𝑗)

𝑓𝐾𝑗(𝑥𝑗)
) = 𝑎𝑘 +

𝑗=1

𝑝

𝑔𝑘𝑗(𝑥𝑗)

1. LDA is a special case of QDA with 𝑐𝑘𝑗𝑙 = 0 for all 𝑗 = 1, . . . , 𝑝, 𝑙 = 1, . . . , 𝑝, and 𝑘 =

1, . . . , 𝐾

2. Any classifier with a linear decision boundary can be link to naïve Bayes with 

𝑔𝑘𝑗 𝑥𝑗 = 𝑏𝑘𝑗𝑥𝑗 and can be considered as a special case of naïve Bayes 

 If we model 𝑓𝑘𝑗(𝑥𝑗) in the naive Bayes classifier using a one-dimensional Gaussian 

distribution 𝑁(𝜇𝑘𝑗 , 𝜎𝑗
2), then we end up with 𝑔𝑘𝑗 𝑥𝑗 = 𝑏𝑘𝑗𝑥𝑗, where 𝑏𝑘𝑗 = Τ(𝜇𝑘𝑗 − 𝜇𝐾𝑗) 𝜎𝑗

2

In this case, naive Bayes is actually a special case of LDA with Σ restricted to be a diagonal 

matrix with 𝑗th diagonal element equal to 𝜎𝑗
2

3. QDA and naive Bayes can produce flexible fit
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 LDA would do better than Logistic Regression if the assumption of normality 

hold, otherwise logistic regression can outperform LDA

 KNN is completely non-parametric: No assumptions are made about the shape 

of the decision boundary!

 In order to provide accurate classification, KNN requires a lot of observations relative to 

the number of predictors. This has to do with the fact that KNN is non-parametric, and thus 

tends to reduce the bias while incurring a lot of variance

 QDA is a compromise between non-parametric KNN method and the linear 

LDA and logistic regression. If the true decision boundary is:

 Linear: LDA and Logistic outperforms

 Moderately Non-linear: QDA outperforms

 More complicated: KNN is superior
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An Empirical Comparison

 We generated data from six different scenarios. each of which involves a binary 

(two-class) classification problem

1. In three of the scenarios, the Bayes decision boundary is linear, and in the remaining 

scenarios it is non-linear

2. For each scenario, we produced 100 random training data sets. On each of these training 

sets, we fit each method to the data and computed the resulting test error rate on a large 

test set

3. The KNN method requires selection of 𝐾, the number of neighbors. We performed KNN 

with two values of 𝐾: 𝐾 = 1, and a value of 𝐾 that was chosen automatically using an 

approach called cross-validation, which we discuss further in Chapter 5

4. We applied naive Bayes assuming univariate Gaussian densities for the features within 

each class
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1. There were 20 training observations in each of the two classes. 

The observations within each class were uncorrelated random 

normal variables with a different mean in each class

 The left-hand panel shows that LDA performed well in this setting, as 

one would expect since this is the model assumed by LDA. Logistic 

regression assumes a linear decision boundary, its results were only 

slightly inferior to those of LDA

 KNN performed poorly because it paid a price in terms of variance that 

was not offset by a reduction in bias. QDA also performed worse than 

LDA, since it fits a more flexible classier than necessary

 Naive Bayes was slightly better than QDA because the naive Bayes 

assumption of independent predictors is correct
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2. Details are as in Scenario 1, except that within each class, the two 

predictors had a correlation of − 0.5

 The notable exception is naive Bayes, which performs very poorly here, 

since the naive Bayes assumption of independent predictors is violated

3. As in 2 but we here generated 𝑋1 and 𝑋2 from the multivariate 𝑡-
distribution, with 50 observations per class

 The decision boundary was still linear, and so fit into the logistic regression 

 The set-up violated the assumptions of LDA. It shows that logistic 

regression outperformed LDA, though both methods were superior to the 

other approaches

 In particular, the QDA results deteriorated considerably as a consequence of 

non-normality

 Naive Bayes performed very poorly because the independence assumption 

is violated
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4. The data were generated from a normal distribution, with a 

correlation of 0.5 between the predictors in first class, and 

correlation of −0.5 between the predictors in the second class

 This setup corresponded to the QDA assumption and resulted in 

quadratic decision boundaries 

 The naive Bayes assumption of independent predictors is violated 

therefore performs poorly

5. Within each class, the observations were generated from a normal 

distribution with uncorrelated predictors. However, the responses 

were sampled from the logistic function applied to a non-linear 

function of the predictors

 Both QDA and naive Bayes gave slightly better results than the linear 

methods while the much more flexible KNN-CV method gave the best 

results

 But KNN with 𝐾 = 1 gave the worst results out of all methods
44
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6. The observations were generated from a normal distribution 

with a different diagonal covariance matrix for each class. 

However, the sample size was very small: just 𝑛 = 6 in each 

class

 Naive Bayes performed very well, because its assumptions are 

met. LDA and logistic regression performed poorly because the 

true decision boundary is non-linear, due to the unequal 

covariance matrices

 QDA performed a bit worse than naïve Bayes, because given the 

very small sample size, the former incurred too much variance in 

estimating the correlation between the predictors within each 

class. KNN’s performance also suffered due to the very small 

sample size
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Bikeshare dataset

 We consider the Bikeshare data set. The response is bikers, the number of 

hourly users of a bike sharing program in Washington, DC

 This response value is hard to be classified into qualitative or quantitative variable: it takes 

on non-negative integer values, or counts

 We will consider counts predicting bikers using the covariates mnth (month of the year), hr

(hour of the day, from 0 to 23), workingday (an indicator variable that equals 1 if it is 

neither a weekend nor a holiday), temp (the normalized temperature, in Celsius), and 

weathersit (a qualitative variable that takes on one of four possible values: clear; misty or 

cloudy; light rain or light snow; or heavy rain or heavy snow)
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Linear Regression on the Bikeshare Data
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Bikeshare dataset

 Upon more careful inspection, some issues become apparent. 

 For example, 9.6% of the fitted values in the Bikeshare data set are negative: that is, the 

linear regression model predicts a negative number of users during 9.6% of the hours in the 

data set 

 The variance is not constant as well

48

 The response Y is necessarily 

continuous valued (quantitative). 

Thus, the integer nature of the 

response bikers suggests that a 

linear regression model is not 

entirely satisfactory for this data 

set



Poisson Regression

 Suppose that a random variable 𝑌 takes on nonnegative integer values, i.e. 𝑌 ∈
{0, 1, 2, . . . }. If 𝑌 follows the Poisson distribution, then

Pr 𝑌 = 𝑘 =
𝑒−λλ𝑘

𝑘!
for 𝑘 = 0,1,2, …

 Here, λ > 0 and λ = 𝐸 𝑌 = 𝑉𝑎𝑟(𝑌), The Poisson distribution is typically used to model 

counts; this is a natural choice for a number of reasons

 We consider the following model for the mean λ = 𝐸 𝑌|𝑋
𝑌|𝑋 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)

log(λ(𝑋1, … , 𝑋𝑝)) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝

 Given 𝑛 independent observations from the Poisson regression model, the 

likelihood takes the form

𝑙 𝛽0, 𝛽1, … , 𝛽𝑝 =ෑ

𝑖=1

𝑛
𝑒−λ(𝑥𝑖)λ(𝑥𝑖)

𝑦𝑖

𝑦𝑖!

49

https://dafriedman97.github.io/mlbook/content/c2/s1/GLMs.html#example-poisson-regression


Poisson Regression on the Bikeshare Data
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Generalized Linear Models (GLM) in Greater Generality

 We have now discussed three types of regression models: linear, logistic and 

Poisson. These approaches share some common characteristics:

1. Each approach uses predictors 𝑋1, . . . , 𝑋𝑃 to predict a response 𝑌. We assume that, 

conditional on 𝑋1, . . . , 𝑋𝑃, 𝑌 belongs to a certain family of distributions. For linear 

regression, we typically assume that 𝑌|𝑋 follows a Gaussian or normal distribution. For 

logistic regression, we assume that 𝑌|𝑋 follows a Bernoulli distribution. Finally, for 

Poisson regression, we assume that 𝑌|𝑋 follows a Poisson distribution

2. Each approach models the mean of 𝑌 as a function of the predictors. 

𝐸 𝑌 𝑋1, … , 𝑋𝑝 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝

𝐸 𝑌 𝑋1, … , 𝑋𝑝 =
𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝

𝐸 𝑌 𝑋1, … , 𝑋𝑝 = 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝
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Generalized Linear Models in Greater Generality

 They can be expressed using a link function, 𝜂, which link function applies a 

transformation to 𝐸 𝑌 𝑋1, … , 𝑋𝑝 so that the transformed mean is a linear 

function of the predictors. That is

𝜂 𝐸 𝑌 𝑋1, … , 𝑋𝑝 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝

 The link functions for linear, logistic and Poisson regression are 𝜂(𝜇) = 𝜇, 𝜂(𝜇) =
log(𝜇/(1 − 𝜇)), and 𝜂(𝜇) = log(𝜇), respectively

 The Gaussian, Bernoulli and Poisson distributions are all members of a wider 

class of distributions, known as the exponential family 

 In general, we can perform a regression by modeling the response 𝑌 as coming from a 

particular member of the exponential family, and then transforming the mean of the 

response so that the transformed mean is a linear function of the predictors via the link 

function
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 GLM model the mean

 Variance is related to mean and error not i.i.d.

 https://stats.stackexchange.com/questions/401045/why-no-variance-term-in-bayesian-logistic-

regression

 https://stats.stackexchange.com/questions/259704/is-there-i-i-d-assumption-on-logistic-regression

 Think of it as modeling the conditional distribution

 https://stats.stackexchange.com/questions/55538/does-poisson-regression-have-an-error-term

 https://stats.stackexchange.com/questions/124818/logistic-regression-error-term-and-its-

distribution

 https://stats.stackexchange.com/questions/353231/conditional-distribution-in-logistic-regression
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https://stats.stackexchange.com/questions/353231/conditional-distribution-in-logistic-regression


Coefficient and Standard error

 Coefficient and Standard error

 Logistic regression

 https://web.stanford.edu/class/archive/stats/stats200/stats200.1172/Lecture26.pdf

 https://stats.stackexchange.com/questions/303180/standard-error-of-the-estimate-in-logistic-

regression

 https://stats.stackexchange.com/questions/68080/basic-question-about-fisher-information-matrix-

and-relationship-to-hessian-and-s

 LDA and QDA

 https://arxiv.org/pdf/1906.02590.pdf

 GLM

 https://www.sagepub.com/sites/default/files/upm-binaries/21121_Chapter_15.pdf

 OVO or OVR

 https://en.wikipedia.org/wiki/Multiclass_classification
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Review of Covariance Matrix

 Let 𝑥1, … , 𝑥𝑛 be length-𝑝 observation vectors

𝑥𝑖 =

𝑥𝑖1
𝑥𝑖2
⋮
𝑥𝑖𝑝

 Without Loss Of Generality (WLOG), let their mean be length-𝑝 0-vector

 Let the data matrix 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) be a 𝑝 by 𝑛 matrix

 The sample covariance matrix

𝑆 = Τ𝑋𝑋𝑇 (𝑛 − 1) =

𝑖=1

𝑛

𝑥𝑖𝑥𝑖
𝑇/(𝑛 − 1) =

𝑖=1

𝑛

(𝑥𝑖 − ҧ𝑥)(𝑥𝑖 − ҧ𝑥)𝑇 /(𝑛 − 1)
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Review of  eigenvalue decomposition- Maximum variance 

formulation 

 Find a direction vector 𝑢1 ∈ 𝑅𝑝 and 𝑢1
𝑇𝑢1 = 1 such that the variance of the 

projected data is maximized
1

𝑛
σ𝑖=1
𝑛 (𝑢1

𝑇𝑥𝑖 − 𝑢1
𝑇 ҧ𝑥)2 = 𝑢1

𝑇𝑆𝑢1

 To enforce the constraint, we introduce a  Lagrange multiplier denoted by λ1 and get the 

unconstrained maximization of 

𝑢1
𝑇𝑆𝑢1 + λ1(1 − 𝑢1

𝑇𝑢1) or maximize 
𝑢𝑇𝑆𝑢

𝑢𝑇𝑢

 By setting the derivative with respect to 𝑢1 equal to zero, we see that this quantity will 

have a stationary point when 

𝑆𝑢1 = λ1𝑢1
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Review of  eigenvalue decomposition- Maximum variance 

formulation 

 𝑢1 must be an eigenvector of 𝑆, if we left-multiply by 𝑢1
𝑇 we get

𝑢1
𝑇𝑆𝑢1 = λ1

 and so the variance will be a maximum when we set 𝑢1 equal to the eigenvector having the 

largest eigenvalue λ1. This eigenvector is known as the first principal component.

 We can define additional principal components in an incremental fashion by 

choosing each new direction to be that which maximizes the projected variance 

amongst all possible directions orthogonal to those already considered.

 In a 𝑟-dimensional projection space, we now consider the optimal linear projection for which 

the variance of the projected data is maximized is defined by the 𝑟 eigenvectors 𝑢1, … , 𝑢𝑟 of 

the data covariance matrix S corresponding to the 𝑟 largest eigenvalues λ1, … , λ𝑟. 
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Principal Component Analysis (PCA)  (1/2)

 If we collect eigenvectors and eigenvalues into matrix
𝑆𝑝×𝑝𝑈𝑝×𝑝 = 𝑈𝑝×𝑝Λ𝑝×𝑝
𝑆𝑝×𝑝 = 𝑈𝑝×𝑝Λ𝑝×𝑝𝑈𝑝×𝑝

𝑇

 Note 𝑋 = 𝑈𝑆𝑉𝑇

 Scores are 𝑈𝑇𝑋 = 𝑆𝑉𝑇

 It is equivalent to Minimum error formulation

𝑎𝑟𝑔𝑚𝑖𝑛𝑈𝜖 𝑂𝑝,𝑟 

𝑖=1

𝑛

|(𝑋𝑖 − ത𝑋) − 𝑈𝑈𝑇(𝑋𝑖 − ത𝑋))|𝐹
2
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Convention 1 Convention 2

𝑈 Principal component

Principal direction

Loading

Principal axis

Principal direction

𝑈𝑇𝑋 Principal component scores Principal component



Principal Component Analysis (PCA)  (2/2)

 Connection with SVD

S =
𝑋𝑋𝑇

𝑛 − 1
=
𝑈𝐷𝑉𝑇𝑉𝐷𝑈𝑇

𝑛 − 1
= 𝑈

𝐷2

𝑛 − 1
𝑈𝑇 = 𝑈Λ𝑈𝑇

 In practice, we will often scale data before PCA 

 Whiten data matrix (identity covariance matrix)

 Λ−1/2𝑈𝑇X

 ZCA (Close to original data (often not reduce dimension))

 𝑈Λ−1/2𝑈𝑇X
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